

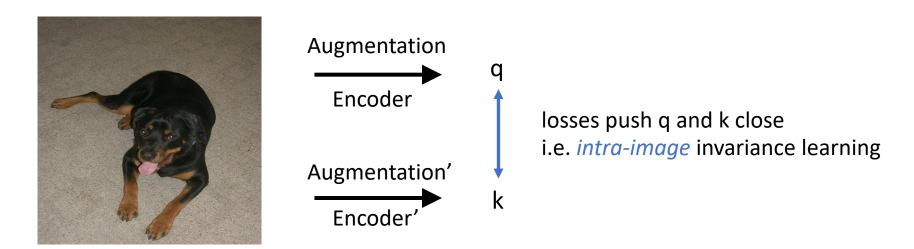
Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency

Haiping Wu Xiaolong Wang

McGill University, Mila

UC San Diego

• Most contrast learning methods build on *intra-image* invariance learning or *intra-video* invariance learning.



MoCo, SimCLR, BYOL, etc.

MoCo: He, Kaiming, et al. "Momentum contrast for unsupervised visual representation learning." *CVPR* 2020. SimCLR: Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." PMLR 2020. BYOL: Grill, Jean-Bastien, et al. "Bootstrap your own latent: A new approach to self-supervised learning." NeurIPS 2020 Image credit: ImageNet

 Most contrast learning methods build on intra-image invariance learning or intra-video invariance learning.

From the same video clip B

Augmentation
Encoder

Iosses push q and k close i.e. intra-video invariance learning k

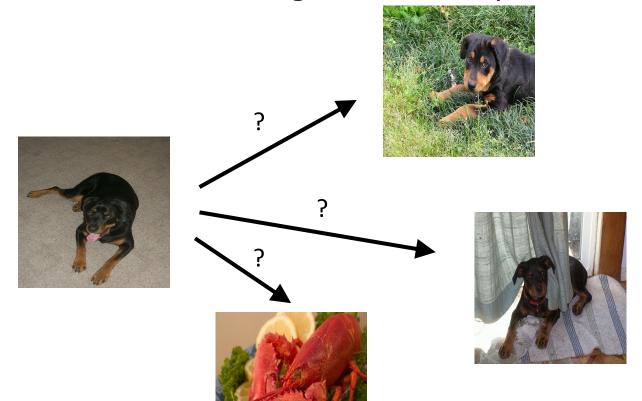
Encoder'

Augmentation'
Encoder'

VINCE, CVRL, pBYOL, etc.

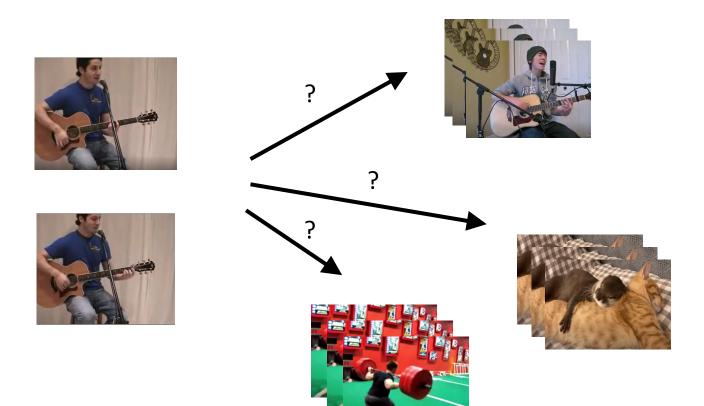
VINCE: Gordon, Daniel, et al. "Watching the world go by: Representation learning from unlabeled videos." *Arxiv* 2020 CVRL: Qian, Rui, et al. "Spatiotemporal contrastive video representation learning." CVPR 2021 pBYOL: Feichtenhofer, Christoph, et al. "A Large-Scale Study on Unsupervised Spatiotemporal Representation Learning." *CVPR* 2021 Image credit: UCF101

What about inter-image relationships?



Ideally, **intra-class** invariance is desired, however, no class labels are available

What about inter-video relationships?



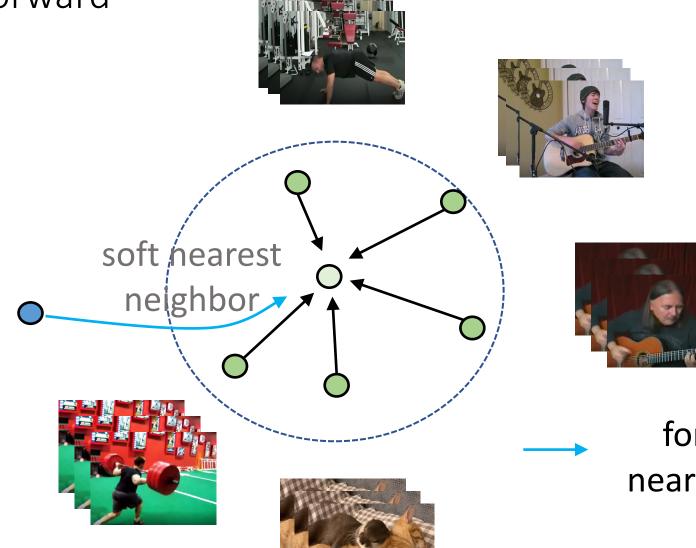
Ideally, **intra-class** invariance is desired, however, no class labels are available

- Most contrast learning methods build on *intra-image* invariance learning or *intra-video* invariance learning.
- Fail to explicitly regularize feature presentations belong to the same class.
- How to solve?
- -> use clustering to generate pseudo labels (e.g. DeepClustering, Local Aggregation)

- Most contrast learning methods build on *intra-image* invariance learning or *intra-video* invariance learning.
- Fail to explicitly regularize feature presentations belong to the same class.
- How to solve?
 - -> use clustering to generate pseudo labels (e.g. DeepClustering, Local Aggregation)
- -> this paper: use *cycle-consistency without* generating pseudo labels

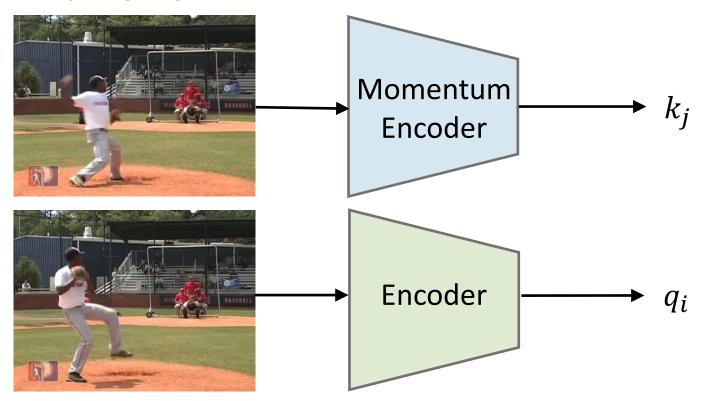
Cycle consistency: forward

Cycle consistency: forward



Cycle consistency: backward cycle consistent soft nearest neighbor forward find nearest neighbor backward find nearest neighbor

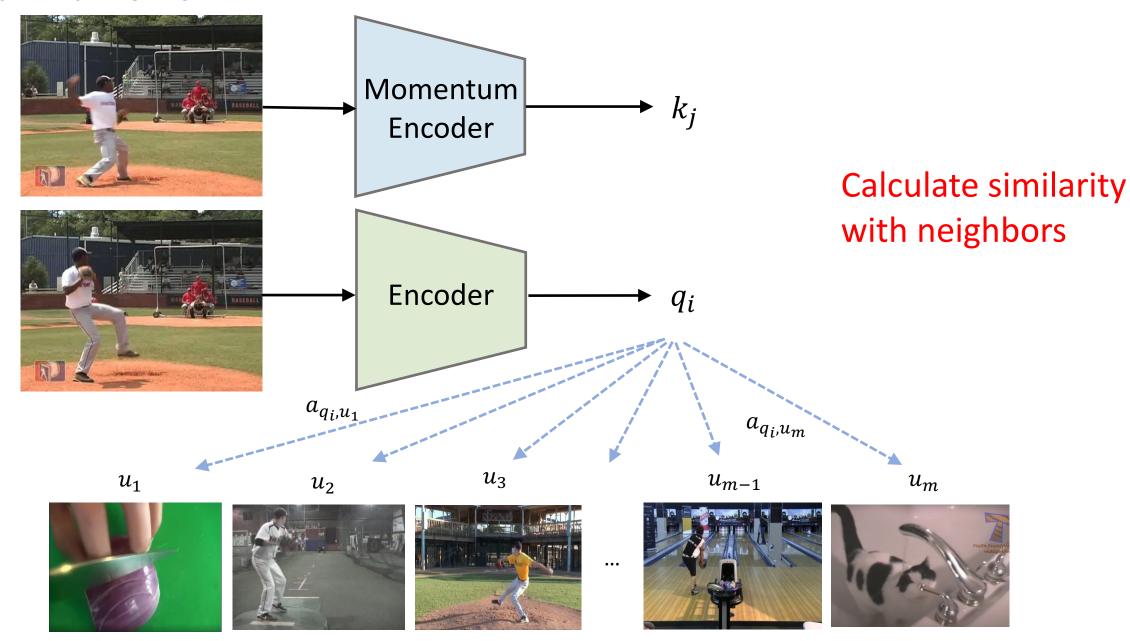
Overall framework



Feature extraction

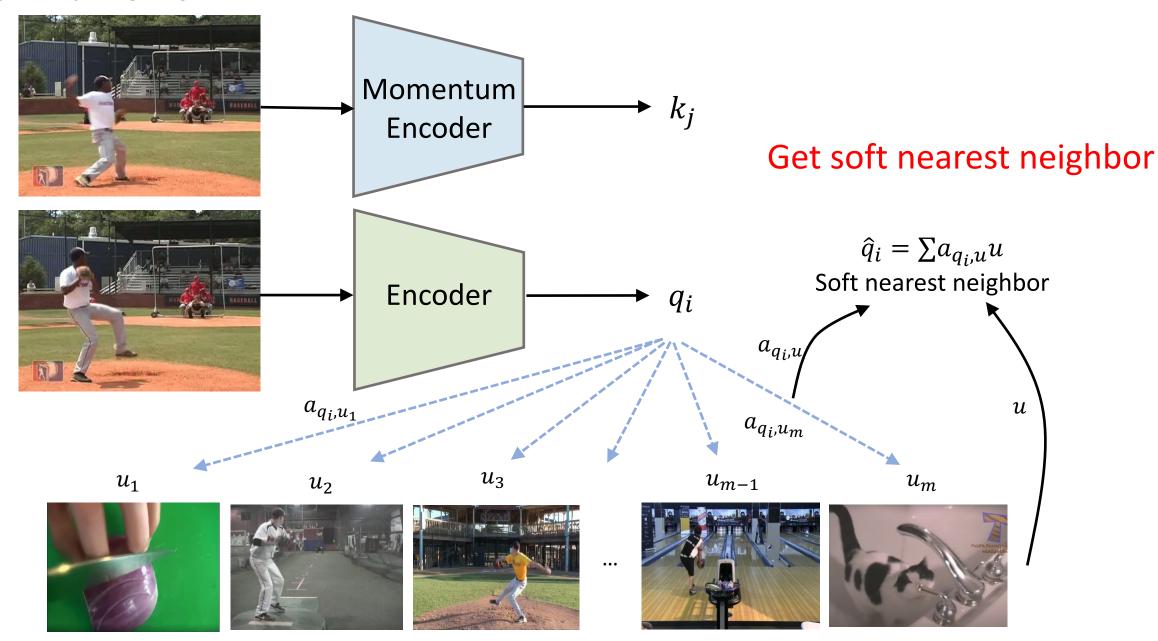
Neighbor representation set $U = \{u_1, u_2, \dots, u_m\}$ from random videos

Overall framework



Neighbor representation set $U = \{u_1, u_2, \dots, u_m\}$ from random videos

Overall framework



Neighbor representation set $U = \{u_1, u_2, \dots, u_m\}$ from random videos

Overall framework Impose cycle consistency with loss Momentum Contrastive Loss Encoder with negatives Positive Pair $\hat{q}_i = \sum a_{q_i,u} u$ Soft nearest neighbor Encoder q_i $a_{q_i,u}$ u a_{q_i,u_m} u_3 u_1 u_{m-1} u_m u_2

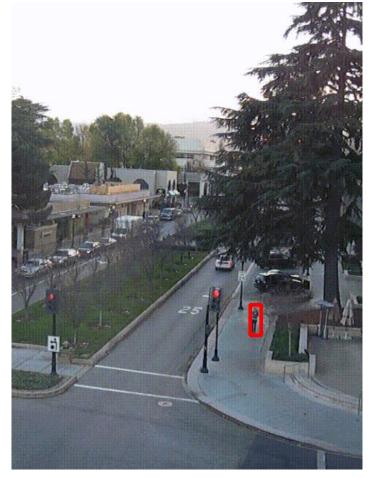
Neighbor representation set $U = \{u_1, u_2, ..., u_m\}$ from random videos

Pretrain Dataset

Random Related Video Views (R2V2)

Results – Visual Object Tracking

Tracking results compared to baseline, on OTB-2015



MoCo

Results – Visual Object Tracking

Visual object tracking on OTB2015 compared to State-of-the-art

Methods	Precision	Success
SimSiam	61.0	43.2
MoCo	63.7	46.5
VINCE	40.2	30.0
Ours	72.7	53.3

Results – Linear Image Classification

Linear Image classification compared to state-of-the-art, on ImageNet

Methods	Pretrain dataset	ImageNet Acc Top-1
МоСо	R2V2	53.6
VINCE	R2V2	54.4
Ours	R2V2	55.6

Results – Video Action Recognition

Video action recognition on UCF101

Methods	Backbone	Model Params	Pretrain dataset	Accuracy
3D-RotNet	3D-ResNet18-full	33.6M	Kinetics-400	62.9
SpeedNet	I3D	12.1M	Kinetics-400	66.7
Dense Predictive Coding	3D-ResNet18	14.2M	Kinetics-400	68.2
MemDPC	R-2D3D	32.4M	Kinetics-400	78.1
Ours	ResNet18	11.69M	R2V2	76.8
Ours	Resnet50	25.56M	Kinetics-400	81.6
Ours	ResNet50	25.56M	R2V2	82.1

3D-RotNet: Jing et al. "Self-supervised spatiotemporal feature learning by video geometric transformations." *arXiv 2018*. SpeedNet: Benaim, Sagie, et al. "Speednet: Learning the speediness in videos." CVPR 2020 Dense Predictive Coding: Han et al. "Video representation learning by dense predictive coding." *CVPR Workshops*. 2019. MemDPC: Han et al. "Memory-augmented dense predictive coding for video representation learning." *ECCV* 2020.

Takeaways and conclusions

- Explore cross-image/cross-video relation helps general image representation learning
- Use cross-video cycle consistency to regularize cross-video representations without pseudo labels